My Thesis

It is possibleto calculatethe reliability of a software sysem from the reliabilitie s of the com-
ponentsof which the sysiemis composed.

| would like to alsoclaimthat it is practical, but asmostpeopk would claim it wasnt possi
ble,| will settlefor thelesse& claim.

Why components?

Building systemsut of compmentsis anatural partof engireerirg sysems.With therise of Ob-
ject Oriented Progranming,compaenttecmology is widely seenasthe panaeato the software
productivity prodem. For mary systams, reliahility is of critical importanceand for suchsys-
temsareliahlity compogtion calcdus would be a significantadwance.

The Nature of Reliability

Therefae ther is atleag asmuchneedfor reliability andreliability compogtion in softwareas
thereis in hardvare.Unfortunatel, mostintuition abou reliahility in thehardwareworld is worse
thanusdessin the softwareworld, becaisethe propaties of the problem domains areso differ-
ent. This is primarily becaiseof several kinds of continuity and monotaicity that exist in the
physical world thatdon't exist in the virtual world. Chapter2 examines theseissues, descibes
the majorapprachedo softwarereliability, andshowvs how theisswesaffect theappoaches.

Program Input Domains

Thereliability of a program(sysemor a comporent)is the probability thata giveninput is pre-
senteal to the program as input, multiplied by one or zero,depading if the program prodwces
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2 MY THESIS

the sameoutput asthe specification saysit shauld or not, summedover all possble inputsto the
program. However, this valueis not directly calaulable as mostprogamshave essatially infi-
nite possble discree inputs. In chager 3 we look at an abstactionof this called pathhdomairs,
which groupsthe possble inputsinto setsof inputs thatarespecfied to be calcdatedin the same
way, and setsof inputs that are calcdatedin the sameway. We categorize these domairs into
four clasesthathave differentwaysto determire their reliabilitie s. By weightng thesedomairs
by the probability of inputs falling into eachdomain,we cancalaulateprogramreliability. Thisis
still impradical for mostsysems but is viable for mary comporents

Component Independence

Therehasbeena fair amoun of previouswork in modeling software comporentreliability. The
mostglaring prodem with thatwork is thatthey geneally talk abaut independacewithout for-
mally definingwhatis necesary Indepenenceis afundamentalrequrementfor calcuating sys-
temreliahlity from comporentreliabilities, whethe in hardvare or software sysems.Markov
analysis is often usedin suchcalalation. However, procedures as corventionally useddo not
quaify asnodesin a Markov sysem.In chaper4 we outlinetherequrementdor severd classs
of compmentindepen@&nceandusethe CPStransformaton to corvert corventional procedures
into fragmentsappropriate to Markov analysis.

Probability Density Functions

To calcukltereliability of acompament,we needto have anaccurae weighing of the probability
of the various sutbdomainsof the input space The obviousway to do this is with a histogam of
theinput subcddmains,but thereis no goodway to detemine the histogram of the outpu of the
comporent. Chapte 5 discussesprobability densty functionsand the statistical theory of their
trandormation through opetionssuchasaddtion and multiplication andexplains how this is
applicableto programs.
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1.6 COMPOSING SYSTEMS FROM COMPONENTS 3

Composing Systems from Components

Chapte 6 desribeshow a compaentecanomy would work - what compaentprovidersmust
stateabou their comporents,andhow systemintegrators would usethat information. We dis-
cussa rangeof compasition technqueswith different perfomanceand degrees of conena-
tivism/eccuracy. We alsoaddessthe problemthat somecomporentswill have anessentlly in-
finite setof subdmainsandprovide two pradical apprachedo this probem.

Extension to Other Paradigms

In therestof thethesiswe have assunedthatcomporentsarefunctional (i.e. thatther is no state
thatis retaired betweeninvocatians that is ever modified). Given that much of the impetusfor
comporentsis thecurrent popukarity of ObjectOrientad Programmingchapte 7 outlinesa sourd
treamentof objectoriented andimperative progranswithin this model.

Conclusions

Chapte 8 dravs condusionsabou the thesisandsuggestsfuture work.
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The Nature of Reliability

Thereis longstandng pracice for detemining reliahlity for hadware systens. However, there
aremary differencesetweerhardvareandsoftwaresystens,andin this chager we shov where
theassumgonsfrom systenreliahlity theay cau® difficulty whenappled to software.

In this chaptr andelsavhere whenwe referto hardvarereliahility we arenot talking abou
the reliahility of the compuerson which software runs, but rather of the reliability detemina-
tionsusedin tradiional engneerirg domairs suchasElectrical or Mecharical Engineeing. The
baclgrourd for thisis derivedfrom (Bentley 1999 Leemis1995 Ramakumad993).

Definitions

DEFINITION 2.1
Reliablity is the probability thata sysemwill not suffer a Failure while executirg with a partic-
ular operationd profile.

DEFINITION 2.2
Failure meansthat the systam is not operding accoding to the specification. Failuresmay be
terminding or cortinuing.

DEFINITION 2.3
Terminatirg Failureis afailure thatcauseshe systam to halt. Although it is somevhatoptimistc,
we geneally will usethis definition of failure in this thess.

DEFINITION 2.4

Detectdle Failure is a failure that can be detectedat run-time, but is not mandaed by the se-
manticsof the progamminglanguageto halt the sygem. For example,in C, referencirg anin-
valid arrayindex is not a terminating failure, whereasn safelanguagessuchasAda, Schene,
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6 THE NATURE OF RELIABILITY

andJava an excepion or errar is thrown upon sucha refererce. We assumea safe program-
ming modelandwill therdore assumehatdetectablefailureswill betreatedasterminading.

DEFINITION 2.5
Continuing Failureis afailurethatdoes not preventthe progiamfrom cortinuing.

DEFINITION 2.6
Operatonal Profileis the desciption of the ervironmern in which a sygemwill beused.

DEFINITION 2.7

Multi-Version Programming MVP) meanshaving several differentteamsmplementa progam,
andthenhaving a voting system thatchoo®sthe majority answeror the unarimousanswerThe
ideais thatthe diversty of theimplemerations will not have coinddentfailuresandthat the sys-
temwill thushave higher reliahility.

Markov Models in Hardware Reliability

TheMarkov propety statesgiventhe currentstateof the sysem,thefuture evolution of the sys-
temis indepenentof its histoly.

TheMarkov propety is assuedif thetransition probabilities aregiven by exponentid distri-
butionswith constant failure or repar rates.In this case we have a statimary, or time homoge
neots, Markov process.This modelis usefu for descibing electonicimechancal systamswith
reparablecompaments which eithe function or fail. As anexample,a Markov modelcould de-
scribe a computer sysem with comporentsconssting of CPUs,RAM, network card and hard
disk cortrollers andharddisks.

In the 3-componentsystan in figure 2.1, for the system to beworking, comporentC andone
of A or B mustbeworking. We will assunmetha componat A is reparable.

To prodwce a Markov modelfor a systan, the systemis andyzed to detemine the possble
states thatthe sydemcanoccuyy. In figure 2.1, ary of the 3 comporentscanbe working or fail-
ing, sothereareatotal of 2> = 8 possble states (A, B,C), (4, B,C), (A,B,C), (4,B,0),
(A,B,C), (A,B,C), (A,B,C), (4, B, C) (whereA is working and 4 is failing). Sincefor the
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2.2 MARKOV MODELS IN HARDWARE RELIABILITY 7

Figure 2.1 A simplethreecomporentsysten

A

system to be working, comporent C and one of A or B mustbe working, there are 3 working
states: (4, B, C), (4, B,C), and(4, B, C), with the other5 staesbeing failure states

Figure 2.2 Markov modelfor the simplesystam in figure2.1

Thereliability (Markov) modelfor this is shavn in figure 2.2, whereall of the failure states
arelumped togetherinto state 4. In suchmodelsthelabds onthearcsdescibe the ratesat which
thedexribedsysemmalkestranstions from onestateto anoter. The ) arcsarefailureratesfor
comporentz, andthe p; arcsarerepairratesfor compment:. Oncethe modelhasbeenderived,
standaird Markov analysiswill allow usto calcuate B (t) — the steag-stae probability of being
in stak . Thenthereliakility will be:

R(t) = P[in asuccesstateattime]
= 1 — PIin failure stateattime t].
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8 THE NATURE OF RELIABILITY

For this modelthereare4 states:
e Statel: A,B,C working;

e State2: B,C working andA failing;

e State3: A,C working andB failing;

e Stated: A,B failing or C failing.

Sincestatesl,2,3areall sucessstatesandstae 4 is afailure state,
R(t) = Pi(t)+ P(t) + Ps(t)
=1 — Py(t).
This derivationis depementon the sygemmeetingthe Markov asaimptiors:

e staktrangtionsindepenent: \4 cornstant,regardiessof how system arrivedin statel

e failureratesindependent: P[A fail | B fail]|= P[A fail]
If, for example, comporent A waslessreliable after having beenrepairedthan originally, then
in order to maintan Markov properties the stake diagran would probably be unrolled, asin fig-
ure 2.3. Herethe ), and/, representthe revised failure andrepar rates for comporentA af-

Figure 2.3 Revision of figure 2.2, whereA is not perfedly reparable

ter it hasbeenrepared once.If thereliability detegiorated materidly in subgquen repars, this
modelwould continueto be unrolled until the compmentwasunrepairable or the postrepar re-
liability stabilzed.
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2.3 SOFTWARE RELIABILITY 9

Figure 2.4 Revision of figure 2.2, wherefailure of B is notindependeat

Alternatively, the modelmight be inaccuatebecaisethefailure rates werenotindependent.
If afailure of compaentA would immediatdy cau® afailure of comporentB with someprob-
ability (becaseof increasedoad,for exampk), thenit would be moreaccuateto shaw this asa
dired transtion to stae 4 (reflededin figure2.4as X, with X', captuing thefailuresof A that
did not causefailureof B). In suchasysem,it is very likely tha evenif compaentB didn’t fail
immediatdy, it would have alowerreliability. Thisis reflectedn figure 2.4 by Ag:. In this exam-
ple, for simplicity, we have assumedthat compmentA is not affected by the failure of compeo
nentB.

Software Reliability

Current software reliahility estimation methodsuse code testirg to obtain failure data which
drives undelying mathematial modelsby which staistics suchas systemreliahility are estr
mated.The meanindulnessof the statisticsdependon the degreeto which the softwarein ques
tion, andthe softwaretesting anddata,matchthe mathematicalmodelundetying the estimatons
(Lyu 1998. In §2.5we explain how typical software tends to violate the underlying assimptiors
of the modek usedto estmatereliability. In §2.4, we expand upon previous obsewations that
in mary caseshe modelsare not good matches for the software andtestirg processesWe ex-
plain how differing input continuity propeties for hardware and software make it impossble to
borrowcertainaspets of softwarereliability modeling from that of hardvare.We descibe why
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10 THE NATURE OF RELIABILITY

software tesing doesnot provide dataanalogusto hardvaretestirg in termsof reliahility estr
mationandcompgsition.

Becausg themodekfor reliability arenotagood matchfor software andsoftwaretesting, the
meanirgfulnessof the estimates comeinto question, aspreviously indicatedby mary others, in-
cluding (Butler andFinelli 1993; Hamlet1994a; Lyu 1998 Parnasl1993). We expard uponthes
obsevationsin §2.5.

Background: Hardware vs. Software Reliability

Reliabiity for hardvaresygemsis afunction of 4 factas:

e errarsin desiq,
e errasin manubdure,
e physcal defeds, and
e chamicalandphyscal weat
Engineeringis the art of the possble. Therefae, of necesiy, every desigi is acompromig
of severd elemerts: costs utility, andreliahility (amongothess). Different desighs canincrease

or decrasethe contiibution of the remairing factas (such asspedfying different tolerancesto
redwcemanufduring errors or spedfying higher qualty materid to minimizedefecs andwear).

Thesefactas leadto threetypical compmentsof failure:

e infant mortalty,
e |oad variarcefailure,and
e agingfailure.

Thechaacterstic failure curvesfor thesecomponats combire to form whatis referedto as
a“bathtubcurve”. (seefigure 2.5). This reflectsa high earlyfailurerate(infant mortality) primar-
ily basedon errorsin desgn andmanuficturing aswell asphysica defeds.

Instancesof the sygemthat getbeyond this initial infant mortality period tendto have very
low failure ratesfor anextended period of time. During this period, failure is dueto variaionsin
theloadimposdonthesysten andto otherrandom ervironmertal fadorssuchasdustandshod.
Finally thefailure ratebeginsto rise asagingsetsin. In this period componatsstat to wearout,
metalsbecomeembrittled,andatomsmigrate in semicadudors,steelandcemen. While therate
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2.3 SOFTWARE RELIABILITY 11

Figure 2.5"Bathtub” reliability curve

or

_

of onsetof thes factas canbe affected by ervironmentalfactas sud asheat,dust,andshod,
andcanoftenbe posponedwith preverntive mainterance the eventud failure is inevitable.

It shauld be notedthat a bathtb curve reflectsthe reliability history (red or predcted) of a
sinde designoverits lifetime. Thus,if adesiq for a systam is refinedor modifiedovertime, the
resuting sequenceof reliahlities form a family of bathtub curves. Thereare mary possble de-
signs for any givensystem.Eachwill have differentengneering trade-offs in termsof costs and
bendits. By using different dedgns, ary of the failure comporentscould be redwced, but this
will usudly bewith incressedcost(by incressingothe failure comporents)or with redwedutil -
ity (heavier, or lesscapable). This canaffect boththe infant mortality andaging(e.g.tolerances
too tight or too loos@, but neither is ultimately preventabé through desigh andnore of the fail-
urecomporentscanbe completely eliminated.

Software is fundamentally different in thatit doesnot wearout> Nor, in mostsengs, are
theremanuécturing errors This leaves us with only desgn (for software, this includesimple-
mentaton) asa soure of failure in software sygems(Littlewood 1979), and one compaent of
failure: loadvariarcefailure.

[

1 Somepeopletalk abaut bit-rot, citing problemslike the Y2K problem Howeverit is notthatthe pro-
gramis deterigating- simply thatthe corditionsunde whichthe programis run (the opeationalpro-
file) have changd.
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Subdomain Analysis

In §2.1we gave ageneal-purposedefinition of reliability thatessetially saidthatit wasthe prob-
ability that asysemwill opeateaccodingto spedfication onaparticular operdional profile. Let
usrestatethatin aform thatis usefl to evaluate softwarereliability:

DEFINITION 3.1
TheReliaklity of aprogram(sygemor acomporent)is the probability thata giveninput is pre-
sental to the programasinput, multiplied by oneor zero,dependingif the programproducesthe
sameoutpu asthe specficationsaysit shoul or not, summedbver all possble inputsto the pro-
gram.Formally,

3 {p(w), if c(z) = s(z);

ax L0, otherwis;

whereX is theinput domain,p(z) is the probability thata random selection from X will be z,
c(z) is theoutput of the program codeoninputz, ands(z) is the output specifiedfor input z.

Unfortunatel, this valueis not directly calcuable asmostprogramshave essetially infinite
posdble discrde inputs. So let’s seeif we canfind a usefu way to grouptheseinputs togeher
into coheentsubdmains.

Path Domains

First of all, we will look atthe domairs thatareprovidedby the program code.For that,we need
adefinition of a path.

DEFINITION 3.2
A Pathis a sequaceof bast blocks leadng through a program,from entry to sucassfu termi-
nation or failure.
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22 SUBDOMAIN ANALYSIS

For example,consderthesimpleprogran in figure 3.1.

Figure 3.1 A simpleprogran
i nput z;
x=1;
y=0;
while (x<5 && x<z) do
if (x<4) then
y=y+X;
else
W=z* z- 25;
y=y/w,
fi
X=X+1,;
od
out put y;

© 0 N O 0 b~ W DN B

P e =
w N+ O

DEFINITION 3.3
A BasicBlock is asequenceof statenentsthathasasinge entry atthetop anda single exit (con
ditional or uncanditional jump) at the bottom.

Figure 3.2 shavs the sameprogramwith the basicblocks labded.

Corvertionaly, the patts for this code are: abg, abcdbg, abcdbcdfbg, abafbcdbedfbg,
abcdbcdfbcdfbeefbg. However, we are conernedwith reliability, so we shoudd explicitly cap-
turethe potentialfailuresin the code Thesewould include thingslik e divide-by-zero, arithmetic
overflow, andsubgript-out-of-range, andwe will treatthemlike jumps,which leads to the defi-
nitionsof afault block.

DEFINITION 3.4

A Fault Block is the singe staement(fault), or is a sequenceof statenentsthat hasa single
entry at the top anda single exit (conditional or unconditional jump) at the bottom. In the latter
case,every instruction in the block will be execued, and no instructions will have anomabus
behavioursud asoverflow, undeflow, or divide by zero.
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3.1 PATH DOMAINS 23

Figure 3.2 A simpleprogran with basicblocks
1 [ input z;

a| x=1;

| y=0;

[ while (x<5 && x<z) do

[

[

if (x<4) then

© 0N O b~ WwN
o O T

Y=Y +X;
else
e[ w=z*z- 25;
I y=yl w,
10 fi
1 f ] X=x+1;
12 od

=
w

g[ output y;

Adding condtional checksfor thes we getthe revisedblocks in figure 3.3. To simplify the
expostion, we have removed somecheds for faultswherethey areimpossble dueto previous
cheds or faults

Thepattsfor thiscodeare:abg,abcdbg, abcdbcdfby, abadfbcdbedfbg, abecdbedfbedfbeeh,
abcdbcdfbcdfbeeij, andabalfbcdfbedfbceikibg. Notethatthe 2 pathsthatdon't getto “g” areal-
readyknown to befailure paths

Eachof thes pathswill befollowed uncanditionally for a particular sutset(or pathrdomain
of the possble inputs (or doman). And the unionof all of the pathdomairs will bethe program
domain

Further eachof the pathswill calcultearestut. It maybeasingle value,or it maybeafunc-
tion of the inputs, but it will be exactly the samesequ&ce of machire instructions thatwill be
execuedfor every possible value in the path-domain Furthermoe, by the methal of constuc-
tion of the paths, nore of thoseinstructions cancauwsea fault, anoverflow, or ary othe soure of
discantinuity (excepton patts thatterminae in (fault) andareidentified assuch.
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Figure 3.3 A simpleprogram with basicblocks andfault checkng

1

© 0o N o o b~ W N
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[
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o O T
————

> O

1

g

i nput z;
x=1,;
y=0;
while x<5 && x<z do
if x<4 then
y=y+Xx;
else
if z>v/MAX then
(fault)

else
w=z*z- 25;
if y/wis an error then
(fault)
else
y=y/w,
fi
fi
fi
X=X+1,;
od
out put vy;

Figure 3.4 Thepatts for the simpleprogram

Number| Path Domain Result
1 abg z<1 0
2 abcdbg 1<2<2 1
3 abcdbcdfbg 2<2z<3 3
4 abcdbcdfbedfbg 3<z<4 6
5 abcdbcdfbcdfooeh z>vVMAX (fault)
6 abcdbcdfbcdfbeeij z=5 (fault)
7 abcdbcedfbedfbeeikfbg | 4 < 2 < 5V 5 < 2z <VMAX ﬁ
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3.2 SPECIFICATION DOMAINS 25

Specification Domains

Referring bad to our definition of reliability, it is clea thatit is meanindesswithout a specifi-
cation for the program.In the abs&ce of a spedfication we could usethe analsisin the previ-
oussection to idertify input subdomainsthatwould signal faults, but thatcertanly doesn't im-
ply thatall otherinput valuesarecorrect.

Specificaibnscancomein mary forms. They maybeexecuableor not, but they mustbefor-
mal to be of any berefitto us.If they areexecutalbe, thenananalysissimilar to thatin the previ-
oussedion canbe appliedto them andthe apgropriate domainsandresuts may be extracted. If
they arein someothe form, correspondng analysis mustbe appliedto acquire the domairs ex-
tantin the speification

Note that we are not attemptig to assst in delugging, or charaderize errors or ary of the
othe thingsfor which pemle have usedpathanddoman testirg, but simply trying to determine
thereliahlity of classes of code(?; ?)

Program Domains and Failure Rates

Oncewe have the setC of codedomains andthe setS of spedfication domains we candeter-
mine the set D of program domairs, eachof which is covered by somecodedomainandsome
spedfication doman.

D= (UUCmS]) -0

By constuction, eachof thes progamdomairs is a sulsetof somespecificdion domainand
therdore hasa singlespedfied result Similarly, eachof these programdomairs is alsoa subsé
of somecodedoman andtherdore hasa single computal resut.

2 An analysisthat simply identified potentiallyfaulting pathsmay be usefulin itself, but we arehere
interestedn thelarger problem.
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26 SUBDOMAIN ANALYSIS

If the codedomainrepresentsa ( fault) pat, thenthe domainhasa failurerateof 1. Other
wise thereis somecharce that the codeproducesthe spedfied resultandthereforeit will have
somelesse failure rate. Thereare severd wayswe could detemine whetter the codeproduwces
the specfied result

Exact Equivalence

Thesimpled caseis equivalence.Eithertheresut is a constant,or it is a calcuation thatcanbe
proven equialentin the spedfication languageandthe implemeration language.If so,the fail-
urerateis 0.

Enumerable

If thedomah hasa very small numberof membersthenit may be pradical to run the codeon
eachvalue in the domainand verify that the resultis the sameasthe one specified If they all
pass the failure rateis 0. If not, thelikely appoachwould beto fix the exposed bug andrerun
the proces < Denise:whenl got to that point in my thess talk at BNR, the developersrolled
arownd onthefloor laughing...>> to deteminethe codedomairs. Alternatively, thefailing points
canbeputin adomainof their own with afailurerateof 1, andthecorrectpoints canbe assigied
afailure rateof 0.

Linear

If thespecficationis of ahypeaplanecalaulatedfrom theinput, andthecoderestt is alsoahyper-
plare, theresuls canbe shovn to be equalby tesing atall the extremapoints of the hypergane.
This canbedore in 2" testsfor an-dimensonal hypergane.If they all passthefailure rateis 0.
If not,thelikely apprachwould beto fix the exposedbug andrerunthe proces to deteminethe
codedomans. Alternatively, the doman canbe assgneda failure rateof 1. < consevative >.

MasonPh.D.Thesis— domain2.tex(1.5) Draft — 18 August2001 18:39



3.4 DEALING WITH AN INFINITY OF PATH-DOMAINS 27

Sampling

If nore of the otherapprachesworks, the fallbackis to perform a uniform random samplirg of
thedoman. Unlike the usud casein software samplng, here samplng is a sourd apprach.Be-
cau® thedomah hasbeencondructed sothatno discmtinuities canexist, samping will provide
meanirgful resuts. Standad statistcal teciques will allow you to derive an expecteal failure
ratefrom the numberof teststhatyou perfam withoutuncoveringary errars. If errors arefound,
thelikely appioachwould beto fix the exposal bug andrerunthe processto deteminethe code
domairs. Alternatively you could usethe assasedreliahility if it is only smallnumbersof errars.

Dealing with an infinity of path-domains

As you may have guesedby now, there arepotentially alot of pathsin atypical progam.Evena
simplefunctionthathas3 sepaatei f statemetswill have 8 pathsthoughit. If youwrapthatin
aloop thatrepeats100 times,you areup to 8'°° possble pathsandif you have 2 suchfunctions
you squae thatnumbe . .. but you gettheidea

The usefd insight hereis that thereare hugenumkbers of pathsthatwe don't actualy care
abou. For example mary of thosepathswill endin (fault), andin ausefd programthosewon't
actudly getrun.And thenthereareall thespegal situaionsthatalmostnever getexecued. These
addhugenumbersof paths but they have almog no impacton the reliability of the sygem, be-
cau®they essentlly neverrun.

Unfortunatel, evenif we found a way to weedout all of those this kind of pathanalsisis
still impractical for mostsysems Thegoad news is thatit coud beviable for mary comporents

Theothea badnews is thatevenfor somevery simplecompmentsthe numbe of interestirg
domairs is immense Seechaper 8 for someprospectsfor future work. < putin the refereiceto
thesectia in system-ével on feeding OPsinto the path geneationquete. >

We haven't talked abou how to actuwally geneate paths from the program. Assumethat the
program hasbeenbroken up into bast blocks, or in our case faut blocks, andthat BR, is the
first onein the program.Thenalgorithm 1 shows the stardardalgorithm for geneatingthe paths.
This algorithm geneatesthe pathsin shorest-firstorde. Nodesareassimedto have 1 or 2 jump
targets,or to beexit or faultnodes.
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28 SUBDOMAIN ANALYSIS

Algorit hm 1 Generag Pathsfrom Block List
1 procedureGener at ePat h( st art Node)

2 wor kLi st := newPriorityQueue()

3 wor kLi st . add(0, (startNode, newPat h())

4 while wor kLi st . not Enpty do

5 node, path : = workLi st. next

6 pat h. add( node)

7 if node. exit then

8 path.emt (' exit’)

9 elseif node. faul t then

10 path.emt (' fault’)

11 else

12 wor kLi st. add(node. target (1).m nl ength, (node.target(1), path))
13 if node. j unps=2 then

14 wor kLi st . add(node. target (2). mi nl engt h, (node. target(2), path))
15 fi

16 fi

17 od

For our pumposeswe want the mostimportant paths first. Thatis, the ones with the highest
likelihood of being executd. Algorithm 2 showsthe algolithm for geneating the paths in most
frequentorder Thesameassumpbnsasbefore, exceptthat i nput is theinitial (comgete)input
domain andthe priority quete ordes on a pair, maximizingthefirst of the pair, andminimizing
the secoml of the pair.

Previous Work

Analyzing thedomansbasedn the pathsfoundin boththecode andthe specificationwascalled
Partition Analysisin (Richardson1981;RichaidsonandClarke 1985, but wasusedfor determin
ing the corrednessof a proggamthrough a combinationof formal verification andtestirg.

Weyuker and Ostrard (1980 were exploring similar ground, trying to find domairs where
eithe all testspasedor all testsfailed, althoughin the extremetheirdomanscamedown to eac
being a single point.
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3.6 WHAT ABOUT THAT OPERATIONAL PROFILE? 29

Algorit hm 2 Generag¢ Pathsin Frequeng Order
1 procalure Gener at ePat hl nFr eqOr der (st art Node, i nput)

2 wor kLi st := newPriorityQueue()

3 wor kLi st . add( (0, 0), (start Node, newPat h(),input,null))
4 while wor kLi st . not Enpty do

5 node, pat h, domai n, result : = workLi st. next

6 pat h. add( node)

7 if node. exi t then

8 path.emt (' exit’, domain, result)

9 elseif node. faul t then

10 path.em t (' fault’, domain)

11 else

12 newResult : = node. cal cul ate(result, domai n)

13 newDonmai n : = node.filter (1, domain)
14 wor kLi st . add( (newDonai n. si ze, node. target (1). m nl ength),
15 (node.target (1), pat h, newDonai n, newResul t))

16 if node. j unps=2 then

17 newDonmai n : = node.filter (2, domain)
18 wor kLi st . add( (newDomai n. si ze, node. target (2). m nl engt h),
19 (node. target (2), pat h, newDonai n, newResul t))

20 fi

21 fi

22 od

The contribution of this chapte is the useof fault blocks asthe condituent elementof paths
andtheconsquen homogeeity of theasso@ateddomans,the classfication of domairs,andthe
techriqueto geneatean ongadng sequaceof the mostuseill domairs.

Someof theideas in this chaper werepublishedas(MasonandWoit 2000).

What about that Operational Profile?

At this point, we have anaccuatecharaterizaion of thereliahility of eath progamdomain.By
weighting these domais by the probability of inputs falling into eachdomain,we cancalcuate
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30 SUBDOMAIN ANALYSIS

the progamreliability. Soif we hadanacairateoperational profile for a programasit wasactu
Ref= ally used we could predict its reliakility with fair success.As mentioredin <intradable>>>, this
is intractabk for complketesysemsbecaisenormaly they will have too mary domairsto beuse-
able.
However, for componaits,finding accuateopemational profilesis quite possible.We will dis-
cusshow to dothatin chager 6, oncewe've laid someground work.
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Probability Density Functions in Program Analysis

To accuately, or evenconsenatively, determinethereliability of programs,we will needto know
the valuesthat the variablesand expressiors in the programcantake on. This is partly becaise
the valuescan determire the reliability directly (for exampleif a variade could be zeroandis
usedin adivision, thereis a charce of failure),andpartly becasethe valuesof variadesustally
deteminethe frequeng of execuion of various parts of the program.

Thesimplestchamlcteriationof the valuesthata variablke couldhave is thetype of avariale.
This is extended in languageslike Ada(Ada Joint ProgramOffice 1983) to include subranges.
This can,in somecircumsancesule out certan failures,but for others saysnothing abouttheir
likelihood

To increasetheaccurcy of charaterizaion of thevalues we coud useasymbolc or abstact
interpretaton of the programto detemine the setor range of valuesthata variablecancontan.
This providesafiner grain of cheding, but is essatially the sameastype-baseddetemination.

To provide the mostaccuatecharacerizaion, we will needto have a profile of the setof val-
uesthateachvariable cantake on. For someprogramvarialdes (synthetic variades suchasloop
contols) this canbe deteminedvia an abstactinterpretaion of the program. For othe's (input
variales), statistcal information canbe provided abou the ervironmentin which the program
will run.

In this chaper, we examinethe coneptof Probalility DensityFunctiors andhow they relaie
to variables,expressions andstatenentsin a progcamminglanguage.

An earlyversin of this waspresentedas(Mason2001).
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44 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

Probability Density Functions versus Histograms

Virtually all previouspublication onwork with operatonal profiles(Musa1998 Lyu 1996a Woit

andMason1998b; Hamlet,Mason,andWoit 2001; MasonandWoit 2000) hasusedhistograms
to representthe input dersity for the operatioral profile. Thereare two fundamental problems
with this. Thefirst is thatthe bourdaries reflectal in the histogrammay have little or norelaton-

shipto theway the programworks, sotesing basedon it mayseriausly distort the actud reliabil-

ity of the progran. Thesecoml is amoreserousissueif histogramvaluesaregoingto beflowed
from onecompamentto the next, asis donein (Hamlet,Mason andWoit 2001)®

As an exampk of the problem, assume we have two input paraméers. To make this as
simple as possble, we will assumethat they have uniform integer values, X = {1,2} and
Y = {4,5,6, 7}, bothshavn in figure5.1(X is thedarker colour).

Figure 5.1 X andY with discetedistributions
1

Figure 5.2 shawvs the sumof the two variables,and figure 5.3 shows the prodwct. As can
be clealy seen the nice uniform histogramshae haschanged significantly, even after a single
opeiation. With any moreoperdions, it becomescompldely unremgnizable.

6 Thatpape worksarownd the prodem with a correct,but computationallyintractableapprach.
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5.2 INTRODUCTION 45

Figure 5.2 X plusY with disaetedistributions
1
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Figure 5.3 X timesY with discretedistributions
1
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Introduction

A Probalility Density Functionis a non-negative function with anintegral of 1. Thatis, f is a
Probalility DensityFunctioniff:

f(z) > 0,Yz € dom(f), and
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46 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

flz)dz =1.
dom(f)
Thevalueof thefunction f(z) is the probability thatif arandomvaluein thedom(f) is cho-

sen,thatthe valuewill be x. For coninuous functionsit is usualy morerelevart to consder the
probability thata valuewill lie within somerange a < z < b, whichis:

/ab f(z)dz.

Probalility Density Functins canbediscreteor cortinuous. An exampk of a disaete Prob-
ability Density Functionis the probability thataflip of afair coinwill behead or tails:

flip(heads) = 0.5
flip(tails) = 0.5.

An example of acontnuous Probalility Density Functionis the probability thata peronwill
be a particular height, or have a paricular 1Q. In standad staistica usage disaete Probabiity
Density Functians are called Probalility Functons (PFs).The importan differenceis thatin a
PF asinde value canbesignificant:

Zf(x) dz

is equal to f(a) andmaybe nonzero,whereador a Probablity DensityFunction:

/aaf(:zz) dx

is equal to 0, regardessof thevalueof f(a). Notethat f maynotbeafully continuousfunction,
but it will beatleastleft-continuousor right-continuous at every point in its domain To simplify
the presatation, we will usetheterm Probabiity Densty Functian for both.

To further simplify the preentaton, we will useintegras (/) throughout- even over dis-
cretesetswheresum (3>°) would be literally more correct. As long aswe aretalking aboutthe
integral/sumover the complketedomainof the Probaility DensityFunction(which we almostal-
waysdo) they areessetially equivalent. Only whenactual valuesof the functions arerequired
will wereplacetheintegralswith sums.
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5.3 INDEPENDENCE OF PROBABILITY DENSITY FUNCTIONS 47

The other difference betweendisaete and continuousProbabilty Density Functiansis that
continuous Probability DensityFunctionswill requre aJacolianin thecorvolutions.Wewill use
theJacdnians but understanl thatit will betheconstantl whenthe Probaility DensityFunctian
is discrete.

In commonusagen statigics, thedoman of Proballity Density Functinsis the setof real
numbes. For our purposesit maybeary set,andratherthanusing rangesover therealnumbes
we will oftenusesulsetsof the domainof the Probability DensityFunctian.

Whenwe refer to the domainof Probabiity Density Functions we will meanvaluesor sub
rangeswherethe probability is non-zro,i.e. z € dom(P) iff P(x) # 0.

Independence of Probability Density Functions

Two (or more)randan variades may be dependentor independen. Indepgenderce meanghatthe
Probalility Densty Functionfor onevarigble is not affectedin arny way by the Probablity Den-
sity Functian for anotter variable. Formally:

Px,y(xa y) = Px(x)Py(y)

or
PXO,X1,X2 ('T7y7 Z) = PXo (5E)PX1 (y)sz (Z)

If the variablesare depemlent,thenthe joint densty function B, ,, x, will be a more complex
function, for example

Py x(z,y) = { P,(z), whenz =y }

0, otherwise

As an exampleof this, consder the 2 simpleuniformrangs X = 1...2andY = 3...5.
If X andY areindepencent,then K.y is depctedin figure5.4. Alternaively if, for example,
Y = X x 2+ 1,andhen@Y is dependenton X, then Ky is asshowvn in figure5.5.

In therestof this chaperwe will usejoint Probability Density Functionswithout talking di-
rectly abouttheindependenceof thevariables.
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48 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

Figure 5.4 Sumof Independeant values
1

0 ] l l
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Figure 5.5 Sumof Depenentvalues
1

Probability Density Functions of Program Variables and Operations

In orde to accuatelymodelprogramexecuion (for softwarereliability or code optimizaion) we
needto have agoad represenétionfor thevaluesthatvarious programvariablescanhold. We will
usea Probalility Densty Functionfor eachvariale in the program, or programfragment,unde
examinaion. For avarialle abc the Probabiity DensityFunctionwill be By, whereP,p () is
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5.4 PROBABILITY DENSITY FUNCTIONS OF PROGRAM VARIABLES AND OPERATIONS49

the probability thatthevalueof abc is 2, andthedomainof By will bethesetof all values that
abc coud take on.

For all integers andliterals, the Probability Densty Functonswill be discretedistributions.
Floating-point, or “real” valueswill alsobe represened asdiscretedistributions if their values
areenumeablefrom examindion of theprogram,or if they areinputvariadeswith specified dis-
cretedistributions.If they aretheresut of functionssud assin, log, or exp, or arecontinuousin-
putvalues, thenthey will betreatedascontinuousdistributions. Notethatthis assumption, while
not techically corred since compuer floating point numbes areactually finite-precison ratio-
nalnumbes, is ausefulfiction thatwill facilitatederiving closed-farm solutionsto the sygemsof
equdions.By paying carefu attention to confiderceintervals,accuateprobailities shout beat-
tainable.

If variades arerepresentel asProbaliity Densty Funcions,thentheresut of program ex-
pressonsmustalsobeProbablity DensityFunctions.In thebalarce of this secton welook atex-
pressonsof randan varialdes, expresedasProbalility Densily Funcions.Someof thetheseare
derivedfrom (DeGroot1989); theremairderaredevelopedin the samestyle.

Literals

The Probability Density Functionfor any program literal (or compiletime consant) value c is
thefunction:

P.(c) =1

TheProbabiity DensityFunctian for eachliteral (whethe realor integer) is adiscreteProbability
DensityFunction with a single elementn thedoman.

Monadic Functions

TheProbalility DensityFuncion for negationis:

P_,(z) = Py(—2).
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50 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

This canbe extendedto ary invertible monadicfunction f as:

Pf(x) (z) = Px(f_l(z))‘](z)a

where J(z) = |L f71(z)|,
wherever f~1 is defined
Dyadic Functions
TheProbalility DensityFuncion for addtion is:
Priy(2 /P %,y y) dy,

or

x+y /ny CE

Therewill be multiple versians for mostoperdions, but we will only mentionthemwhenthey
areimportant.

The form for addition can be extended to ary dyadic left-invertible function (such that

S (,y),y) = 2) as:
P. /P z )‘if_l(z )‘d
£(x,y) ey (f ,Y), e )| dy.
This worksfine for subtiactionanddivision, but thereis a potential probem with multiplica-

tion sincez x y is notleft-invertible if y = 0. However, thisis just asapplicableto arny dyadic
right-invertible function (suchthat: f~!(z, f(z,y)) = ), as:

_ d ,_
Puia)(2) = [ Paylonf™402) | 217 )| .
so aslong asa function is either left or right invertible, thereis a soluion. For multiplication

this meansthatif, atleastoneof 0 ¢ dom(F) or 0 ¢ dom(P,;), we canproduce a Probabiity
DensityFunction
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@ Component Reliability Composition

Now we have all the piecesfor compamentreliahlity compasition, andareready to putit all to-
getherinto adesciption of acompmentecoromy.

Role of the Component Supplier

The comporent suppler desigis and progjamsthe comporent. They thenchoosea likely input
distribution’ and startcharacteizing the compament, asdescibed in chaper 3. This is a time-
consuming processin the commoncasewhenthere area lot of domairs and wherethe oracke
(which verifiesthat the implemenation matctesthe speification) is slow. Fortunatly the pro-
cessof charaterizing the compamentcanberunin paralkel on afarmof machines.

Thegoalof the charaderizdion is to detemineall of the sub-cbmainsof the componat, and
the quality of eachsub-cmain.

Likely beforethis is complde, arequestwill comefrom a systemdesgnerwith aspedfic in-
put distribution and a requestfor the quality of the comporentfor thatdistribution. If the input
sub-domainsalready chamacterzed cover the non-zero partsof the specfied distribution, thena
guaity numbe canbe calcdatedandreturnedto thesygemdesigrer. Otherwisetheprovidedin-
put distribution canbe subdituted into the charaterizaion processwhich will cau® the subse
quert charaterized sub-domainsto be the onesmostrelevantto the cusomerneeds

7 Theexactdistribution doesnt matterat this stage- evenauniform distribution will work fine if noth-
ing betterpresentstself - it may just take longe thannecessaryo charactare the mostimportant
paths.

8 Distributions from multiple customersanbe combnedwith aweightingfunctionbasednthevalue
of eachcustomeisoasto keepthemall ashapy aspossible.
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A consevative appioximation to the qualty numbercanbe calaulatedby assumiig failure in
all of theuncharacteized sub-domains|f all of theuncharactrizedsub-domairs have extremely
low probabilities,base&l onthe specified input distribution, this canprovidea usefu interim value
to the system designer, with the sureknowledge thatthe system will only becomemorereliable
astheresidual sub-dbmainsarecharaterized.

Role of the System Designer

Thesysemadesgnerhasb maintasks

1.

Design the strudure of the system. This involvesall the usud stegs of decommsingthe
problem, decidng if ary off-the-shef componeats can be used detemining the bast
cortrol strucure.

Specify thecompaments Thespedfications mustbeformal spedfications sothatthey can
be usedin the processde<ribedin chager 3. It alsomustbe,in somesensegxecutble
soit canbe usedbelow

Determire the input distribution. The moreacairatel this canbe detamined,the more
acarately theactualsygemreliahility will berepored.

. Implementthe skeletal systan to deteminethe distributionsthatwill be presentedo the

compaents This is very similar to the compmentchaacterization process,in that the
programwill be executdwith Probabilty Densily Functionsrepresening theinput, and
the parametes to all compaentswill be collected.Perfectimplemenations of the com-
porentsmustbe available sothattheresuls of eachcomporentcanbe usedin thecalcu
lationsprovidedto subsguentcompaents

Extrad from the systan design the modelthatwill usethe componat quaity numbes
to calaulate overdl sysem quality. This will be an equationin m unknowns (wherem
is the numbe of comporentinvocations)or anequdion in n unknowns(wheren is the
numker of compmentsused. The choice betwee thesewill be exploredin §6.2.1.The
corstantsin the equaion will reflectthe quality of the sysemstructurecode
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6.2 ROLE OF THE SYSTEM DESIGNER 65

Theterm“systemdesigrer” neednot be condruedto referto a single person- it maybeawhole
compauy thatis the gereral contrector for a project. Notethat everything afterthefirst two tasks
canpotertially beperfamedin paralel with the compmentsupgiers.

Speed versus Accuracy

To calcdatethesygemqualty complaely accuatelywould require treating every call to acom-
ponent sepaately, which would ental mary requestsfor quaity numbes from the comporent
supgier andthenincorporaing thosenumbes into the equaions. If, onthe other hard, we could
provide one,properly weighted qualty numberfor all usesof eachcompament,the calcuations
would be greatly simplified

To deteminethefeasihlity of lumping themall togeher, a Monte Carlosimulaion wascre-
atedcompaing thetwo appioache. Thedifferencebetweerthetwo depenison threethings the
gualty of theglue code thequdity of thecomporent,andthe numberof timesthe compaentis
called in apath

If acompmentis calledonceper path,thenthe errar will be boundedby the product of the
uncetainty of thequdity of the glue codeandthe quaity of the compment.For exampleg if the
glue hasa quality of 0.9 andthe comporenthasa qudity of 0.99 thenthe errar will belessthan
0.001.

If thecomporentis calledn timesin thelongestpaththenthe quality of the compamentmust
be n?z beter, wherez is the uncertairty in the qudity of the glue code For example,with the
glue codethe sameasin the previous example,but the comporentcalled 100 times,the compo
nentquality hasto improve to 0.9999999 to maintan anerror boundof 0.001. Of couse,if the
comporentis calledthatmary timesit would have to have very high quality anyway, but thelevel
requredto bourd the erroris amuchmorestringentrequrement.
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Blurring the Distinction: Components that Use Components

Long-Running Components
Previous Work

Very early versimsof theideas thatmalke up this chaper werepublishedas(Hamlet,Mason,and
Woit 1999; Hamlet,Mason andWoit 2001).

MasonPh.D.Thesis— () Draft — 18 August2001 18:39



