
1 My Thesis

It is possibleto calculatethe reliability of a softwaresystem fr om the reliabilitie sof the com-
ponentsof which the system is composed.

I would like to alsoclaim that it is practical,but asmostpeople would claim it wasn’t possi-
ble, I will settlefor thelesser claim.

1.1 Why components?

Building systemsoutof componentsis anaturalpartof engineering systems.With theriseof Ob-
ject OrientedProgramming,componenttechnology is widely seenasthepanaceato thesoftware
productivity problem. For many systems, reliability is of critical importanceand for suchsys-

temsa reliability composition calculus would bea significantadvance.

1.2 The Nature of Reliability

Therefore there is at least asmuchneedfor reliability andreliability composition in softwareas

thereis in hardware.Unfortunately, mostintuition about reliability in thehardwareworld is worse
thanuselessin thesoftwareworld, becausethepropertiesof theproblem domainsaresodiffer-
ent. This is primarily becauseof several kinds of continuity andmonotonicity that exist in the

physical world that don’t exist in the virtual world. Chapter2 examines theseissues, describes
themajorapproachesto softwarereliability , andshows how theissuesaffect theapproaches.

1.3 Program Input Domains

Thereliability of a program(systemor a component) is theprobability thata given input is pre-
sented to the program as input, multiplied by oneor zero,depending if the programproduces
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2 MY THESIS

thesameoutput asthespecification saysit should or not, summedover all possible inputs to the

program.However, this value is not directly calculable asmostprogramshave essentially infi-
nite possible discrete inputs. In chapter 3 we look at an abstractionof this calledpath-domains,

which groupsthepossible inputsinto setsof inputs thatarespecified to becalculatedin thesame
way, andsetsof inputs that are calculated in the sameway. We categorize these domains into

four classesthathave differentwaysto determine their reliabilities.By weighting thesedomains
by theprobability of inputs falling into eachdomain,wecancalculateprogramreliability. This is

still impractical for mostsystems, but is viable for many components.

1.4 Component Independence

Therehasbeena fair amount of previouswork in modeling softwarecomponent reliability. The
mostglaring problem with thatwork is that they generally talk about independencewithout for-

mally definingwhatis necessary. Independenceis a fundamentalrequirementfor calculating sys-
tem reliability from component reliabilities, whether in hardwareor software systems.Markov
analysis is often usedin suchcalculation. However, procedures asconventionally useddo not

qualify asnodesin aMarkov system.In chapter4 weoutlinetherequirementsfor several classes
of componentindependenceandusetheCPStransformation to convert conventional procedures

into fragmentsappropriate to Markov analysis.

1.5 Probability Density Functions

To calculatereliability of a component,we needto have anaccurate weighting of theprobability
of thevarioussubdomainsof the input space. Theobviousway to do this is with a histogramof

the input subdomains,but thereis no goodway to determine the histogramof the output of the
component.Chapter 5 discussesprobability density functionsandthe statistical theory of their

transformation through operationssuchasaddition andmultiplication, andexplains how this is
applicableto programs.
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1.6 COMPOSING SYSTEMS FROM COMPONENTS 3

1.6 Composing Systems from Components

Chapter 6 describeshow a componenteconomy would work - what componentprovidersmust

stateabout their components,andhow systemintegrators would usethat information.We dis-
cussa rangeof composition techniqueswith different performanceand degrees of conserva-

tivism/accuracy. We alsoaddresstheproblemthatsomecomponentswill have anessentially in-
finite setof subdomainsandprovide two practical approachesto this problem.

1.7 Extension to Other Paradigms

In therestof thethesiswehaveassumedthatcomponentsarefunctional (i.e. thatthere is nostate
that is retained betweeninvocations that is ever modified).Given that muchof the impetusfor

componentsis thecurrent popularity of ObjectOriented Programming, chapter 7 outlinesasound
treatmentof object-orientedandimperative programswithin this model.

1.8 Conclusions

Chapter 8 draws conclusionsabout thethesisandsuggestsfuture work.
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2 The Nature of Reliability

Thereis longstanding practice for determining reliability for hardwaresystems.However, there
aremany differencesbetweenhardwareandsoftwaresystems,andin thischapterweshow where

theassumptionsfrom systemreliability theory cause difficulty whenapplied to software.

In this chapter andelsewhere whenwe refer to hardwarereliability we arenot talking about

the reliability of the computerson which softwareruns, but rather of the reliability determina-
tionsusedin traditional engineering domains suchasElectrical or Mechanical Engineering. The

background for this is derivedfrom (Bentley 1999; Leemis1995; Ramakumar1993).

2.1 Definitions

DEFINITION 2.1

Reliability is theprobability thata systemwill not suffer a Failurewhile executing with a partic-
ular operational profile.

DEFINITION 2.2
Failure meansthat the system is not operating according to the specification. Failuresmay be

terminating or continuing.

DEFINITION 2.3

Terminating Failureis afailurethatcausesthesystem to halt.Although it is somewhatoptimistic,
we generally will usethis definition of failure in this thesis.

DEFINITION 2.4
Detectable Failure is a failure that canbe detectedat run-time, but is not mandated by the se-

manticsof the programminglanguageto halt the system.For example,in C, referencing an in-
valid arrayindex is not a terminating failure,whereasin safelanguagessuchasAda, Scheme,
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6 THE NATURE OF RELIABILITY

andJava an exception or error is thrown upon sucha reference. We assumea safeprogram-

ming modelandwill therefore assumethatdetectablefailureswill betreatedasterminating.

DEFINITION 2.5
Continuing Failureis a failurethatdoes not preventtheprogramfrom continuing.

DEFINITION 2.6
OperationalProfileis thedescription of theenvironment in which a systemwill beused.

DEFINITION 2.7
Multi-VersionProgramming(MVP) meanshaving several differentteamsimplementa program,

andthenhaving a voting system thatchoosesthemajority answeror theunanimousanswer. The
ideais thatthediversity of theimplementationswill not have coincidentfailuresandthat thesys-

temwill thushave higher reliability .

2.2 Markov Models in Hardware Reliability

TheMarkov property states: giventhecurrentstateof thesystem,thefutureevolution of thesys-
temis independentof its history.

TheMarkov property is assuredif thetransition probabilitiesaregivenby exponential distri-

butionswith constant failure or repair rates.In this case,we have a stationary, or time homoge-
neous, Markov process.This modelis useful for describing electronic/mechanical systemswith

repairablecomponents, which either function or fail. As anexample,a Markov modelcould de-
scribe a computer system with componentsconsisting of CPUs,RAM, network cardandhard

disk controllers andharddisks.

In the3-componentsystem in figure2.1,for thesystem to beworking, componentC andone

of A or B mustbeworking. We will assumethat component A is repairable.

To produce a Markov modelfor a system, the systemis analyzed to determine the possible
states that thesystemcanoccupy. In figure2.1,any of the3 componentscanbeworking or fail-

ing, so therearea total of
�������

possible states: �	��
��
���� , �	��
��
 ��� , �	��
 ��
���� , �	��
 ��
 ��� ,� ��
��
���� , � ��
��
 ��� , � ��
 ��
���� , � ��
 ��
 ��� (where � is working and � is failing). Sincefor the
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2.2 MARKOV MODELS IN HARDWARE RELIABIL ITY 7

Figure 2.1A simplethreecomponentsystem

�
B

A

C �

system to be working, component C andoneof A or B mustbe working, there are3 working
states: �	��
��
���� , �	��
 ��
���� , and � ��
��
���� , with theother5 statesbeing failure states.

Figure 2.2Markov modelfor thesimplesystem in figure2.1������1
������2 ������3

������4

���� ��� �� 
�"!

�� $#%��! �&�'#(�"!

)))) * + + + +�,)))) *+ + + +�, -
Thereliability (Markov) modelfor this is shown in figure2.2,whereall of the failure states

arelumped togetherinto state4. In suchmodelsthelabels on thearcsdescribe theratesat which

thedescribedsystemmakestransitions from onestateto another. The �/. arcsarefailureratesfor
component 0 , andthe �1. arcsarerepairratesfor component 0 . Oncethemodelhasbeenderived,
standardMarkov analysiswill allow usto calculate 2 . �43� — thesteady-stateprobability of being

in state 0 . Thenthereliability will be:5 �436� � 287 in a success stateat time 3/9�;:=< 2�7 in failure stateat time 3>9@?
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8 THE NATURE OF RELIABILITY

For this modelthereare4 states:A State1: A,B,C working;A State2: B,C working andA failing;A State3: A,C working andB failing;A State4: A,B failing or C failing.

Sincestates1,2,3areall successstatesandstate 4 is a failurestate,5 �43� � 2CBD�43� # 2FEG�436� # 2 � �43��H:I< 2KJL�43��?
This derivationis dependenton thesystemmeetingtheMarkov assumptions:A state transitions independent: � � constant,regardlessof how system arrivedin state1A failureratesindependent: 2 [A fail M B fail]

� 2 [A fail]

If, for example, component A waslessreliable after having beenrepairedthanoriginally, then
in order to maintain Markov properties thestate diagram would probably be unrolled,asin fig-

ure 2.3. Herethe ��N� and �GN� representthe revised failure andrepair rates for component A af-

Figure 2.3Revision of figure2.2,whereA is not perfectly repairable������1
������2 ������3

������4

����O�5
������6

���N� �P�� N � ��� �� 
�"!�" $#Q�"!�" $#Q�"! �&�'#(�"!

)))) * R
S S S S S S S S SUT

)))) * + + + +�,)))) *+ + + +�, -
ter it hasbeenrepaired once.If the reliability deterioratedmaterially in subsequent repairs, this

modelwould continueto beunrolleduntil thecomponentwasunrepairable or thepost-repair re-
liability stabilized.
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Figure 2.4Revision of figure2.2,wherefailure of B is not independent������1
������2 ������3

������4

���� �&N� �� 
� N !

� N  #%��! �&�'#(�"!

)))) * + + + +�,)))) *+ + + +�, -
Alternatively, themodelmight beinaccuratebecausethefailure rates werenot independent.

If a failure of componentA would immediately cause a failureof componentB with someprob-
ability (becauseof increasedload,for example), thenit would bemoreaccurateto show this asa
direct transition to state 4 (reflected in figure2.4as � N ! , with � N � capturing thefailuresof A that

did not causefailureof B). In sucha system,it is very likely that evenif componentB didn’t fail
immediately, it wouldhavea lower reliability. This is reflectedin figure2.4by �  WV . In this exam-

ple, for simplicity, we have assumedthat componentA is not affected by the failure of compo-
nentB.

2.3 Software Reliability

Current software reliability estimation methodsusecode testing to obtain failure datawhich

drives underlying mathematical modelsby which statistics suchas systemreliability are esti-
mated.Themeaningfulnessof thestatisticsdependon thedegreeto which thesoftwarein ques-

tion, andthesoftwaretesting anddata,matchthemathematicalmodelunderlying theestimations
(Lyu 1998). In X 2.5we explain how typical software tends to violate theunderlying assumptions

of the models usedto estimatereliability. In X 2.4, we expanduponprevious observations that
in many casesthe modelsarenot goodmatches for the softwareandtesting processes.We ex-

plain how differing input continuity properties for hardware andsoftwaremake it impossible to
borrowcertainaspectsof softwarereliability modelling from that of hardware.We describe why
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10 THE NATURE OF RELIABILITY

software testing doesnot provide dataanalogousto hardwaretesting in termsof reliability esti-

mationandcomposition.

Because themodels for reliability arenotagood matchfor softwareandsoftwaretesting, the

meaningfulnessof theestimates comeinto question, aspreviously indicatedby many others, in-
cluding (Butler andFinelli 1993; Hamlet1994a; Lyu 1998; Parnas1993). Weexpand uponthese

observations in X 2.5.

2.3.1 Background: Hardware vs. Software Reliability

Reliability for hardwaresystemsis a function of 4 factors:A errors in design,A errors in manufacture,A physical defects,andA chemical andphysical wear.

Engineering is theart of thepossible. Therefore,of necessity, every design is a compromise

of several elements: costs, utilit y, andreliability (amongothers). Different designs canincrease
or decreasethe contribution of the remaining factors (such asspecifying different tolerancesto

reducemanufacturing errors, or specifying higherquality material to minimizedefectsandwear).

Thesefactors leadto threetypical componentsof failure:A infant mortality,A load variancefailure,andA aging failure.

Thecharacteristic failurecurvesfor thesecomponentscombine to form whatis referredto as

a“bathtubcurve”. (seefigure2.5).This reflectsahighearlyfailurerate(infant mortality) primar-
ily basedon errors in design andmanufacturing aswell asphysical defects.

Instancesof thesystemthat get beyond this initial infant mortality period tendto have very

low failure ratesfor anextendedperiod of time.During this period, failure is dueto variationsin
theloadimposedonthesystemandto otherrandomenvironmental factorssuchasdustandshock.

Finally thefailureratebeginsto riseasagingsetsin. In this period componentsstart to wearout,
metalsbecomeembrittled,andatomsmigratein semiconductors,steelandcement. While therate
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2.3 SOFTWARE RELIABIL ITY 11

Figure 2.5 “Bathtub” reliability curve

0

l(t)
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of onsetof these factors canbeaffectedby environmentalfactors such asheat,dust,andshock,
andcanoftenbepostponedwith preventive maintenance,theeventual failure is inevitable.

It should be notedthat a bathtub curve reflectsthe reliability history (real or predicted) of a
single designover its lifetime. Thus,if a design for a system is refinedor modifiedover time, the

resulting sequenceof reliabilities form a family of bathtub curves.Therearemany possible de-
signs for any givensystem.Eachwill have differentengineering trade-offs in termsof costs and

benefits. By using different designs, any of the failure componentscould be reduced,but this
will usually bewith increasedcost(by increasingother failurecomponents)or with reducedutil-

ity (heavier, or lesscapable).This canaffect both the infant mortality andaging(e.g.tolerances
too tight or too loose), but neither is ultimatelypreventable throughdesign andnone of the fail-

urecomponentscanbecompletelyeliminated.

Software is fundamentally different in that it doesnot wearout.1 Nor, in most senses,are

theremanufacturing errors. This leavesus with only design (for software,this includesimple-
mentation) asa source of failure in softwaresystems(Littlewood1979), andonecomponentof

failure: loadvariancefailure.

1 Somepeopletalk about bit-rot, citing problemslike theY2K problem. However it is not thatthepro-
gramis deteriorating- simply thattheconditionsunder whichtheprogramis run(theoperationalpro-
file) havechanged.
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3 Subdomain Analysis

In X 2.1wegaveageneral-purposedefinition of reliability thatessentially saidthatit wastheprob-
ability that asystemwill operateaccording to specificationonaparticularoperationalprofile.Let
usrestatethat in a form that is useful to evaluatesoftwarereliability:

DEFINITION 3.1
TheReliability of a program(systemor a component) is theprobability thata giveninput is pre-

sented to theprogramasinput, multiplied by oneor zero,dependingif theprogramproducesthe
sameoutput asthespecificationsaysit should or not,summedoverall possible inputsto thepro-

gram.Formally, YZ\[D] ^`_ �4ab��
 if cL�4ab� �ed �4ab� ;f 
 otherwise;

where g is the input domain,
_ �4ab� is the probability thata random selection from g will be a ,cL�4ab� is theoutput of theprogram codeon input a , and

d �4aW� is theoutput specifiedfor input a .

Unfortunately, this valueis not directly calculableasmostprogramshave essentially infinite
possible discrete inputs. So let’s seeif we canfind a useful way to grouptheseinputs together

into coherentsubdomains.

3.1 Path Domains

First of all, we will look at thedomains thatareprovidedby theprogramcode.For that,weneed

a definition of a path.

DEFINITION 3.2

A Pathis a sequenceof basic blocks leading through a program,from entry to successful termi-
nation or failure.
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22 SUBDOMAIN ANALYSIS

For example,considerthesimpleprogram in figure3.1.

Figure 3.1A simpleprogram
input z;1

x=1;2

y=0;3

while (x<5 && x<z) do4

if (x<4) then5

y=y+x;6

else7

w=z*z-25;8

y=y/w;9

fi10

x=x+1;11

od12

output y;13

DEFINITION 3.3

A BasicBlock is asequenceof statementsthathasasingle entry at thetopandasingleexit (con-
ditional or unconditional jump) at thebottom.

Figure3.2shows thesameprogramwith thebasicblocks labeled.

Conventionally, the paths for this code are: abg, abcdfbg, abcdfbcdfbg, abcdfbcdfbcdfbg,

abcdfbcdfbcdfbcefbg.However, we areconcernedwith reliability, so we should explicitly cap-
turethepotential failuresin thecode. Thesewould include thingslike divide-by-zero,arithmetic

overflow, andsubscript-out-of-range,andwe will treatthemlike jumps,which leads to thedefi-
nitionsof a fault block.

DEFINITION 3.4

A Fault Block is the single statement hjibk�l"m436n , or is a sequenceof statementsthat hasa single
entry at the top anda single exit (conditional or unconditional jump) at thebottom. In the latter

case,every instruction in the block will be executed, andno instructions will have anomalous
behavioursuch asoverflow, underflow, or divideby zero.
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3.1 PATH DOMAINS 23

Figure 3.2A simpleprogram with basicblocks
input z;1 o
x=1;2 a M
y=0;3 p
while (x<5 && x<z) do4 b 7

if (x<4) then5 c 7
y=y+x;6 d 7

else7

w=z*z-25;8 e o
y=y/w;9 p

fi10

x=x+1;11 f 7
od12

output y;13 g 7
Adding conditional checks for these we get the revisedblocks in figure3.3.To simplify the

exposition, we have removed somechecks for faultswherethey areimpossible dueto previous
checks or faults.

Thepathsfor thiscodeare:abg,abcdfbg,abcdfbcdfbg,abcdfbcdfbcdfbg,abcdfbcdfbcdfbceh,
abcdfbcdfbcdfbceij, andabcdfbcdfbcdfbceikfbg.Notethatthe2 pathsthatdon’t getto “g” areal-

readyknown to befailure paths.

Eachof these pathswill befollowed unconditionally for a particular subset(or path-domain)
of thepossible inputs (or domain). And theunionof all of thepath-domains will betheprogram

domain.

Further, eachof thepathswill calculatea result. It maybeasinglevalue,or it maybea func-

tion of the inputs, but it will be exactly the samesequenceof machine instructions that will be
executed for every possible value in the path-domain. Furthermore, by the method of construc-

tion of thepaths,none of thoseinstructions cancausea fault, anoverflow, or any other source of
discontinuity (excepton paths thatterminate in hjibk�l"m43n andareidentified assuch).
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24 SUBDOMAIN ANALYSIS

Figure 3.3A simpleprogram with basicblocks andfault checking
input z;1 o
x=1;2 a M
y=0;3 p
while x<5 && x<z do4 b 7

if x<4 then5 c 7
y=y+x;6 d 7

else7

if z> q rs�tg then8 e 7 hjibk�l"m43n9 h 7
else10

w=z*z-25;11 i o
if y/w is an error then12 p hjibk�l"m436n13 j 7
else14

y=y/w;15 k 7
fi16

fi17

fi18

x=x+1;19 f 7
od20

output y;21 g 7
Figure 3.4Thepaths for thesimpleprogram

Number Path Domain Result

1 abg uwv :
0

2 abcdfbg
:yx u�v � 1

3 abcdfbcdfbg
�zx u8v|{ 3

4 abcdfbcdfbcdfbg { x u8v(} 6

5 abcdfbcdfbcdfbceh uw~ q r��tg hjibk�l�m�3n
6 abcdfbcdfbcdfbceij u �e� hjibk�l"m43n
7 abcdfbcdfbcdfbceikfbg } x u x%�I�'��x uwv�q rs��g ������ E6�
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3.2 SPECIFICATION DOMAINS 25

3.2 Specification Domains

Referring back to our definition of reliability, it is clear that it is meaninglesswithout a specifi-
cation for the program.In the absenceof a specification we could usethe analysis in the previ-

oussection to identify input subdomainsthatwould signal faults2, but thatcertainly doesn’t im-
ply thatall otherinput valuesarecorrect.

Specificationscancomein many forms.They maybeexecutableor not,but they mustbefor-

mal to beof any benefit to us.If they areexecutable, thenananalysissimilar to that in theprevi-
oussection canbeapplied to them andtheappropriate domainsandresults maybeextracted.If

they arein someother form, corresponding analysismustbeapplied to acquire thedomains ex-
tant in thespecification.

Note that we arenot attempting to assist in debugging, or characterizeerrors, or any of the

other thingsfor which people have usedpathanddomain testing, but simply trying to determine
thereliability of classes of code.(?; ?)

3.3 Program Domains and Failure Rates

Oncewe have the set � of codedomains, andtheset � of specification domains, we candeter-
mine the set � of programdomains, eachof which is covered by somecodedomainandsome

specification domain.

� ������ . ��� � .�� � ���� <��
By construction,eachof theseprogramdomains is asubsetof somespecification domainand

therefore hasa singlespecified result. Similarly, eachof these programdomains is alsoa subset

of somecodedomain andtherefore hasa single computed result.

2 An analysisthat simply identifiedpotentiallyfaultingpathsmaybe useful in itself, but we arehere
interestedin thelarger problem.
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26 SUBDOMAIN ANALYSIS

If thecodedomainrepresentsa hjibk�l�m436n path, thenthedomainhasa failurerateof
:
. Other-

wise thereis somechance that the codeproducesthe specified resultandthereforeit will have
somelesser failure rate.Thereareseveral wayswe could determinewhether the codeproduces

thespecified result.

3.3.1 Exact Equivalence

Thesimplest caseis equivalence.Either the result is a constant,or it is a calculation thatcanbe

provenequivalentin thespecification languageandthe implementation language.If so,the fail-
urerateis

f
.

3.3.2 Enumerable

If the domain hasa very small numberof members,thenit may bepractical to run the codeon

eachvalue in the domainandverify that the result is the sameasthe onespecified. If they all
pass, the failure rateis

f
. If not, the likely approachwould be to fix the exposed bug andrerun

the process � Denise:whenI got to that point in my thesis talk at BNR, the developersrolled
aroundon thefloor laughing... � to determinethecodedomains.Alternatively, thefailingpointsToDo�
canbeput in adomainof theirown with a failurerateof

:
, andthecorrectpointscanbeassigned

a failure rateof
f
.

3.3.3 Linear

If thespecificationis of ahyperplanecalculatedfrom theinput,andthecoderesult is alsoahyper-

plane, theresults canbeshown to beequalby testing at all theextremapoints of thehyperplane.
This canbedone in

���
testsfor a   -dimensional hyperplane.If they all pass,thefailure rateis

f
.

If not, thelikely approachwould beto fix theexposedbug andreruntheprocess to determinethe
codedomains.Alternatively, thedomain canbeassigneda failure rateof

:
. � conservative � .ToDo�
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3.4 DEALING WITH AN INFINITY OF PATH-DOMAINS 27

3.3.4 Sampling

If none of theotherapproachesworks, the fallbackis to perform a uniform random sampling of
thedomain. Unlike theusual casein software sampling,here sampling is a sound approach.Be-

cause thedomain hasbeenconstructed sothatno discontinuities canexist, sampling will provide
meaningful results. Standard statistical techniques will allow you to derive an expected failure

ratefrom thenumberof teststhatyouperform without uncoveringany errors.If errorsarefound,
thelikely approachwould beto fix theexposed bug andreruntheprocessto determinethecode

domains.Alternatively you couldusetheassessedreliability if it is only smallnumbersof errors.

3.4 Dealing with an infinity of path-domains

As youmayhaveguessedby now, therearepotentially a lot of pathsin a typicalprogram.Evena

simplefunction thathas { separateif statements will have
�

paths though it. If you wrapthat in
a loop thatrepeats

:¡fLf
times,you areup to

� B>¢6¢ possible pathsandif you have
�

suchfunctions

you square thatnumber ?¡?¡? but you gettheidea.

The useful insight hereis that therearehugenumbersof pathsthat we don’t actually care
about. For example, many of thosepathswill endin hjibk�l"m436n , andin auseful programthosewon’t

actually getrun.And thenthereareall thespecial situationsthatalmostnevergetexecuted.These
addhugenumbersof paths, but they have almost no impacton the reliability of thesystem,be-

cause they essentially never run.

Unfortunately, even if we found a way to weedout all of those, this kind of pathanalysis is
still impractical for mostsystems. Thegood news is that it could beviable for many components.

Theother badnews is thatevenfor somevery simplecomponentsthenumber of interesting

domains is immense.Seechapter 8 for someprospectsfor future work. � put in thereferenceto
thesection in system-level on feeding OPsinto thepath generationqueue. � £ ToDo

We haven’t talked about how to actually generatepaths from the program.Assumethat the

programhasbeenbroken up into basic blocks, or in our case, fault blocks, andthat �z� ¢ is the
first onein theprogram.Thenalgorithm 1 shows thestandardalgorithm for generatingthepaths.

This algorithm generatesthepathsin shortest-firstorder. Nodesareassumedto have
:

or
�

jump
targets,or to beexit or fault nodes.
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28 SUBDOMAIN ANALYSIS

Algorit hm 1 Generate Pathsfrom Block List
procedureGeneratePath(startNode)1

workList := newPriorityQueue()2

workList.add(0,(startNode,newPath())3

while workList.notEmpty do4

node,path := workList.next5

path.add(node)6

if node.exit then7

path.emit(’exit’)8

elseif node.fault then9

path.emit(’fault’)10

else11

workList.add(node.target(1).minlength,(node.target(1),path))12

if node.jumps=2 then13

workList.add(node.target(2).minlength,(node.target(2),path))14

fi15

fi16

od17

For our purposeswe want the most important paths first. That is, the ones with the highest

likelihood of being executed.Algorithm 2 showsthealgorithm for generating thepaths in most
frequentorder. Thesameassumptionsasbefore,exceptthat input is theiniti al (complete)input
domain, andthepriority queue orders on a pair, maximizingthefirst of thepair, andminimizing

thesecond of thepair.

3.5 Previous Work

Analyzing thedomainsbasedonthepathsfoundin boththecodeandthespecificationwascalled

PartitionAnalysisin (Richardson1981;RichardsonandClarke1985), but wasusedfor determin-
ing thecorrectnessof a programthrough a combinationof formal verification andtesting.

Weyuker andOstrand (1980) wereexploring similar ground, trying to find domains where

either all testspassedor all testsfailed, although in theextremetheirdomainscamedown to each
being a single point.
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3.6 WHAT ABOUT THAT OPERATIONAL PROFILE? 29

Algorit hm 2 Generate Pathsin Frequency Order
procedureGeneratePathInFreqOrder(startNode,input)1

workList := newPriorityQueue()2

workList.add((0,0),(startNode,newPath(),input,null))3

while workList.notEmpty do4

node,path,domain,result := workList.next5

path.add(node)6

if node.exit then7

path.emit(’exit’,domain,result)8

elseif node.fault then9

path.emit(’fault’,domain)10

else11

newResult := node.calculate(result,domain)12

newDomain := node.filter(1,domain)13

workList.add((newDomain.size,node.target(1).minlength),14

(node.target(1),path,newDomain,newResult))15

if node.jumps=2 then16

newDomain := node.filter(2,domain)17

workList.add((newDomain.size,node.target(2).minlength),18

(node.target(2),path,newDomain,newResult))19

fi20

fi21

od22

Thecontribution of this chapter is theuseof fault blocksastheconstituent elementof paths
andtheconsequent homogeneityof theassociateddomains,theclassificationof domains,andthe
techniqueto generateanongoing sequenceof themostuseful domains.

Someof theideas in this chapter werepublishedas(MasonandWoit 2000).

3.6 What about that Operational Profile?

At this point, we haveanaccuratecharacterization of thereliability of each programdomain.By
weighting these domainsby theprobability of inputs falling into eachdomain,we cancalculate
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30 SUBDOMAIN ANALYSIS

theprogramreliability. Soif we hadanaccurateoperational profile for a programasit wasactu-

ally used, wecould predict its reliability with fair success.As mentionedin � intractable � , thisRef�
is intractable for completesystemsbecausenormally they will have too many domains to beuse-

able.

However, for components,findingaccurateoperational profiles is quitepossible.Wewill dis-
cusshow to do that in chapter 6, oncewe’ve laid someground work.
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5 Probability Density Functions in Program Analysis

To accurately, or evenconservatively, determinethereliability of programs,wewill needto know
the valuesthat the variablesandexpressions in the programcantake on. This is partly because

the valuescandetermine the reliability directly (for exampleif a variable could be zeroandis
usedin a division, thereis a chanceof failure),andpartly becausethevaluesof variablesusually

determinethefrequency of execution of variousparts of theprogram.

Thesimplestcharacterizationof thevaluesthatavariablecouldhave is thetypeof avariable.
This is extended in languageslike Ada(Ada Joint ProgramOffice 1983) to include subranges.
This can,in somecircumstancesrule out certain failures,but for others, saysnothing abouttheir

likelihood.

To increasetheaccuracy of characterization of thevalueswecould useasymbolic or abstract
interpretation of theprogramto determinethesetor range of valuesthata variablecancontain.

This providesa finer grain of checking, but is essentially thesameastype-baseddetermination.

To provide themostaccuratecharacterization, wewill needto haveaprofile of thesetof val-

uesthateachvariable cantake on.For someprogramvariables(syntheticvariablessuchasloop
controls) this canbe determinedvia an abstract interpretation of the program.For others (input

variables), statistical information canbe provided about the environmentin which the program
will run.

In this chapter, weexaminetheconceptof Probability DensityFunctionsandhow they relate
to variables,expressions, andstatementsin a programminglanguage.

An earlyversion of this waspresentedas(Mason2001).

MasonPh.D.Thesis– pdf.tex(1.31) 43 Draft – 18 August2001 18:39



44 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

5.1 Probability Density Functions versus Histograms

Virtually all previouspublication onwork with operationalprofiles(Musa1998; Lyu 1996a; Woit
andMason1998b; Hamlet,Mason,andWoit 2001; MasonandWoit 2000) hasusedhistograms

to representthe input density for the operational profile. Thereare two fundamentalproblems
with this.Thefirst is thattheboundaries reflected in thehistogrammayhave little or no relation-

shipto thewaytheprogramworks, sotesting basedon it mayseriouslydistort theactual reliabil-
ity of theprogram. Thesecond is a moreseriousissueif histogramvaluesaregoing to beflowed

from onecomponentto thenext, asis donein (Hamlet,Mason, andWoit 2001).6

As an example of the problem, assume we have two input parameters. To make this as
simple as possible, we will assumethat they have uniform integer values, g �¥¤�: 
 ��¦ and§ �s¤ }¨
 � 
�©P
�ª ¦ , bothshown in figure5.1(X is thedarker colour).

Figure 5.1X andY with discretedistributions
1

0
0 1 2 3 4 5 6

Figure5.2 shows the sumof the two variables,and figure 5.3 shows the product. As can

be clearly seen, the nice uniform histogramshape haschanged significantly, even after a single
operation.With any moreoperations, it becomescompletely unrecognizable.

6 Thatpaper worksaround theproblem with a correct,but computationallyintractableapproach.
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5.2 INTRODUCTION 45

Figure 5.2X plus Y with discretedistributions
1

0
0 1 2 3 4 5 6 7 8

Figure 5.3X timesY with discretedistributions
1

0
0 1 2 3 4 5 6 7 8 9 10 11 12

5.2 Introduction

A Probability DensityFunctionis a non-negative function with an integral of 1. That is, i is a

Probability DensityFunction iff: i«�4ab�¬ f 
¯®"a�°²±�³D´��jiµ��
·¶L¸&¹
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46 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSISº»¼¯½I¾�¿1À i«�4ab�P±�a �H: ?
Thevalueof thefunction i«�4ab� is theprobability thatif a randomvaluein the ±�³D´��jiµ� is cho-

sen,that thevaluewill be a . For continuous functions it is usually morerelevant to consider the

probability thata valuewill lie within somerange, k x a�v%Á , which is:º$ÂÃ i«�4ab�P±GaK?
Probability Density Functionscanbediscreteor continuous.An example of a discreteProb-

ability DensityFunctionis theprobability thata flip of a fair coin will beheads or tails:ibm40 _ �ÅÄ�ÆPÇ�È�É\� �Êf ? �ibm40 _ �4Ë&ÇÍÌ�Î¨É\� �Êf ? � ?
An exampleof acontinuousProbability Density Function is theprobability thatapersonwill

be a particular height, or have a particular IQ. In standard statistical usage, discreteProbability

DensityFunctions arecalled Probability Functions(PFs).The important differenceis that in a
PF, a single value canbesignificant: ÃY Ã i«�4aW�P±Ga
is equal to i«�	k¨� andmaybenon-zero,whereasfor a Probability DensityFunction:º ÃÃ i«�4ab�P±�a
is equal to

f
, regardlessof thevalueof i«�	k¨� . Notethat i maynot bea fully continuousfunction,

but it will beat leastleft-continuousor right-continuousat every point in its domain. To simplify
thepresentation, wewill usethetermProbability Density Function for both.

To further simplify the presentation, we will useintegrals (Ï ) throughout - even over dis-

cretesetswheresum(Ð ) would be literally morecorrect. As long aswe aretalking aboutthe
integral/sumover thecompletedomainof theProbability DensityFunction(which we almostal-

waysdo) they areessentially equivalent. Only whenactual valuesof the functions arerequired
will we replacetheintegralswith sums.
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5.3 INDEPENDENCE OF PROBABILITY DENSITY FUNCTIONS 47

The other differencebetweendiscreteandcontinuousProbability Density Functions is that

continuousProbability DensityFunctionswill require aJacobian in theconvolutions.Wewill use
theJacobians, but understand thatit will betheconstant

:
whentheProbability DensityFunction

is discrete.

In commonusagein statistics, thedomain of Probability Density Functionsis thesetof real
numbers.For our purposes, it maybeany set,andratherthanusing rangesover therealnumbers

we will oftenusesubsetsof thedomainof theProbability DensityFunction.

Whenwe refer to thedomainof Probability DensityFunctionswe will meanvaluesor sub-
rangeswheretheprobability is non-zero,i.e. a�°²±�³D´��	2�� if f 28�4ab�ÒÑ�ef ?
5.3 Independence of Probability Density Functions

Two (or more)random variablesmaybedependentor independent. Independencemeansthatthe
Probability Density Functionfor onevariable is not affectedin any way by theProbability Den-

sity Function for another variable.Formally:2ÔÓ�Õ Ö��4aK
6×¨� � 2ÔÓ��4aW�¯2ÔÖ��4×&�
or 2ÔÓ6ØÕ Ó�Ù¯Õ Ó6Ú1�4aÔ
6×�
u�� � 2KÓ6ØD�4aW�¯2ÔÓ�ÙÛ�4×&�¯2KÓ6ÚD�	u��
If the variablesaredependent,thenthe joint density function 2�Ó6Ø6Õ Ó�ÙUÕ Ó6Ú will be a morecomplex
function, for example: 2ÔÓ�Õ ÓG�4aÔ
6×&� � ÜÝ Þ 2ÔÓG�4ab��
àß�á&âÛ¸�a � ×f 
 ãLäá¨â¡å�ß�æèç6â é êë

As an exampleof this, consider the 2 simpleuniform ranges g �ì: ?¡?¡? � and
§ � {í?¡?¡? � .

If g and
§

areindependent, then 2Pî�ï"ð is depicted in figure 5.4. Alternatively if, for example,§ � gòñ � # : , andhence
§

is dependenton g , then 2 î�ï"ð is asshown in figure5.5.

In therestof this chapter we will usejoint Probability Density Functionswithout talking di-
rectly abouttheindependenceof thevariables.
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48 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

Figure 5.4Sumof Independent values
1

0
0 1 2 3 4 5 6 7

Figure 5.5Sumof Dependentvalues
1

0
0 1 2 3 4 5 6 7

5.4 Probability Density Functions of Program Variables and Operations

In order to accuratelymodelprogramexecution (for softwarereliability or codeoptimization) we
needto haveagood representationfor thevaluesthatvariousprogramvariablescanhold.Wewill

usea Probability Density Function for eachvariable in theprogram,or programfragment,under
examination. For a variable abc theProbability DensityFunctionwill be óDô¯õ�ö , whereóKô¯õ�öL÷4øbù is
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5.4 PROBABILITY DENSITY FUNCTIONS OF PROGRAM VARIABLES AND OPERATIONS49

theprobability thatthevalueof abc is ø , andthedomainof ó ô¯õ�ö will bethesetof all values that

abc could take on.

For all integers andliterals, the Probability Density Functionswill be discretedistributions.
Floating-point, or “real” valueswill alsobe represented asdiscretedistributions if their values
areenumerablefrom examination of theprogram,or if they areinputvariableswith specifieddis-

cretedistributions.If they aretheresult of functionssuch as ú1û@ü , ý4þDÿ , or �Ûø�� , or arecontinuousin-
put values, thenthey will betreatedascontinuousdistributions.Notethatthis assumption,while

not technically correct since computer floating point numbers areactually finite-precision ratio-
nalnumbers,is ausefulfiction thatwill facilitatederivingclosed-form solutionsto thesystemsof

equations.By paying careful attention to confidenceintervals,accurateprobabilitiesshould beat-
tainable.

If variablesarerepresented asProbability Density Functions, thenthe result of programex-
pressionsmustalsobeProbability DensityFunctions.In thebalanceof thissection welook atex-

pressionsof random variables,expressedasProbability Density Functions.Someof thetheseare
derivedfrom (DeGroot1989); theremainderaredevelopedin thesamestyle.

5.4.1 Literals

The Probability Density Functionfor any program literal (or compile-time constant) value c is

thefunction: ó���÷���ù��
	��
TheProbability DensityFunction for eachliteral (whether realor integer) is adiscreteProbability

DensityFunction, with a single elementin thedomain.

5.4.2 Monadic Functions

TheProbability DensityFunction for negation is:

ó����÷��Pù��Êó���÷�����ù��
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50 PROBABILITY DENSITY FUNCTIONS IN PROGRAM ANALYSIS

This canbeextendedto any invertible monadicfunction � as:ó���� ��� ÷��Pù�� ó��G÷�� �� ÷���ù6ù� ÷���ù�!
"$#&%('�%  ÷���ù��*)))

++-, � �� ÷���ù.))) !
wherever � �� is defined.

5.4.3 Dyadic Functions

TheProbability DensityFunction for addition is:

ó�� ï0/ ÷���ù�� 1 ó���2 / ÷��3�540!64¨ù8794:!
or ó�� ï0/ ÷���ù;� 1 ó���2 / ÷4ø�!-�<� øbù87Gø��
Therewill be multiple versions for mostoperations, but we will only mentionthemwhenthey
areimportant.

The form for addition can be extended to any dyadic left-invertible function (such that:
� �� ÷��«÷4ø�!64&ù�!64¨ù;� ø ) as:

ó ��� ��2 / � ÷���ù;� 1 ó���2 / ÷�� �� ÷��&!64&ù�!64¨ù ) ))) 77=� � �� ÷��&!64¨ù )))) 794:�
This worksfine for subtractionanddivision, but thereis apotentialproblem with multiplica-

tion since ø ñ>4 is not left-invertible if 4?�A@ . However, this is just asapplicableto any dyadic

right-invertiblefunction (suchthat: � �� ÷4ø�!��«÷4ø�!64&ù6ù��B4 ), as:

ó���� ��2 / � ÷��Pù�� 1 ó���2 / ÷4ø�!�� �� ÷4ø�!-��ù6ù ) ))) 779� � �� ÷���!64¨ù )))) 7�40�
so as long asa function is either left or right invertible, thereis a solution. For multiplication

this meansthat if, at leastoneof @DCE 7�þGF�÷	ó8�\ù or @HCE 7�þGF�÷	ó / ù , we canproducea Probability
DensityFunction.
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6 Component Reliability Composition

Now we have all thepiecesfor componentreliability composition, andareready to put it all to-
gether into a description of a componenteconomy.

6.1 Role of the Component Supplier

The component supplier designs andprogramsthe component.They thenchoosea likely input

distribution7 andstart characterizing the component,asdescribed in chapter 3. This is a time-
consuming processin the commoncasewhenthere area lot of domains andwherethe oracle

(which verifies that the implementation matchesthe specification) is slow. Fortunately the pro-
cessof characterizing thecomponentcanberun in parallel on a farmof machines.

Thegoalof thecharacterization is to determineall of thesub-domainsof thecomponent, and

thequality of eachsub-domain.

Likely beforethis is complete,a requestwill comefrom a systemdesignerwith aspecific in-
put distribution anda requestfor the quality of the component for that distribution. If the input

sub-domainsalready characterizedcover the non-zeropartsof the specified distribution, thena
quality number canbecalculatedandreturnedto thesystemdesigner. Otherwise, theprovidedin-

put distribution canbe substituted into the characterization processwhich will cause the subse-
quent characterized sub-domainsto betheonesmostrelevantto thecustomerneeds.8

7 Theexactdistributiondoesn’t matterat this stage- evena uniform distribution will work fine if noth-
ing betterpresentsitself - it may just take longer thannecessaryto characterize the mostimportant
paths.

8 Distributions from multiplecustomerscanbecombinedwith a weightingfunctionbasedon thevalue
of eachcustomersoasto keepthemall ashappy aspossible.
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64 COMPONENT RELIABILITY COMPOSITION

A conservative approximation to thequality numbercanbecalculatedby assuming failure in

all of theuncharacterizedsub-domains. If all of theuncharacterizedsub-domainshave extremely
low probabilities,based onthespecified input distribution, thiscanprovideauseful interim value

to thesystem designer, with thesureknowledgethat thesystem will only becomemorereliable
astheresidualsub-domainsarecharacterized.

6.2 Role of the System Designer

Thesystemdesignerhas5 maintasks.

1. Design thestructureof thesystem. This involvesall theusual steps of decomposingthe
problem, deciding if any off-the-shelf components can be used, determining the basic
control structure.

2. Specify thecomponents. Thespecificationsmustbeformalspecificationssothatthey can
beusedin theprocessdescribedin chapter 3. It alsomustbe,in somesense,executable

soit canbeusedbelow.

3. Determine the input distribution. Themoreaccurately this canbedetermined,themore
accurately theactualsystemreliability will bereported.

4. Implementtheskeletal system to determinethedistributionsthatwill bepresentedto the
components. This is very similar to the componentcharacterizationprocess,in that the

programwill beexecutedwith Probability Density Functionsrepresenting theinput, and
theparameters to all componentswill becollected.Perfectimplementations of thecom-
ponentsmustbeavailable sothattheresultsof eachcomponentcanbeusedin thecalcu-

lationsprovidedto subsequentcomponents.

5. Extract from the system design the modelthat will usethe component quality numbers

to calculateoverall system quality. This will be an equation in F unknowns (where F
is thenumber of component invocations)or anequation in ü unknowns(where ü is the

number of componentsused). Thechoicebetween thesewill beexploredin I 6.2.1.The
constantsin theequation will reflectthequality of thesystemstructurecode.
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6.2 ROLE OF THE SYSTEM DESIGNER 65

Theterm“systemdesigner” neednot beconstruedto refer to a single person- it maybea whole

company that is thegeneralcontractor for a project.Notethat everything after thefirst two tasks
canpotentially beperformedin parallel with thecomponentsuppliers.

6.2.1 Speed versus Accuracy

To calculatethesystemquality completely accuratelywould require treating every call to acom-
ponent separately, which would entail many requestsfor quality numbers from the component

supplier andthenincorporating thosenumbers into theequations.If, on theotherhand, wecould
provideone,properly weighted, quality numberfor all usesof eachcomponent,thecalculations

would begreatly simplified.

To determinethefeasibility of lumping themall together, a MonteCarlosimulation wascre-
atedcomparing thetwo approaches.Thedifferencebetweenthetwo dependson threethings: the
quality of thegluecode, thequality of thecomponent,andthenumberof timesthecomponentis

called in a path.

If a componentis calledonceper path,thentheerror will beboundedby theproductof the
uncertainty of thequality of theglue codeandthequality of thecomponent.For example, if the

gluehasa quality of @J�LK andthecomponenthasa quality of @J�LKMK thentheerror will be lessthan
@J�N@M@&	 .

If thecomponentis called ü timesin thelongestpaththenthequality of thecomponentmust
be ü�O�ø better, where ø is the uncertainty in the quality of the glue code. For example,with the

gluecodethesameasin thepreviousexample,but thecomponentcalled 	(@M@ times,thecompo-
nentquality hasto improve to @J�LKMKMKMKMKMKMK to maintain anerror boundof @J�N@M@&	 . Of course,if the

componentis calledthatmany timesit wouldhaveto haveveryhighquality anyway, but thelevel
required to bound theerror is a muchmorestringentrequirement.
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6.3 Blurring the Distinction: Components that Use Components

6.3.1 Long-Running Components

6.4 Previous Work

Veryearly versionsof theideas thatmakeupthischapterwerepublishedas(Hamlet,Mason,and
Woit 1999; Hamlet,Mason, andWoit 2001).
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